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ABSTRACT 

To celebrate the 125th anniversary of the Swiss Chemical Society, we present a review and perspective to highlight the recent 
research in breath analysis that has been conducted in Switzerland, with a particular focus on secondary electrospray ionization 
mass spectrometry (SESI-HR-MS). We focus on breath analysis research from 2019, the publication year of the last major review. 
We highlight where improvements are needed in experimental and clinical protocols and outline the current gaps in the field, to 
support the implementation of breath analysis into the clinical domain. 
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1 Introduction 

Even since the days of Hippocrates (estimated 460 BCE to 370
BCE), the concept of diagnosing ailments using breath was
around [1, 2 ]. In more recent history, dogs have been reported to
have identified incidences of melanoma in their owner [ 3 ] and
have been trained to help identify patients with specific diseases
[ 4–9 ]. The fundamentals behind this concept are associated with
the smell of volatile organic compounds (VOCs) emitted from
diseased persons. In recent years, this idea has expanded to
using mass spectrometry as a more precise sniffing tool in the
effort to standardize the diagnostic process of “smelling disease.”
By using qualitative and quantitative techniques such as mass
spectrometry, further understanding and useful information can
be gathered regarding the health and metabolic processes in an
individual, thereby advancing biomarker discovery and the field
of clinical diagnostics [ 10–12 ]. 

The human body undergoes a range of metabolic reactions to
maintain a person’s health and normal functioning. These bio-
chemical reactions lead to the production of volatile metabolites,
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which are eventually secreted by the body in some form of
biofluid. On the incidence of disease, these metabolic processes
are altered, inevitably changing the VOCs produced by the body’s
biochemical processes due to changes in the cell’s metabolic
processes [ 13–16 ]. As a result, VOC fingerprints within biofluids
may be used to help identify a healthy or a sick individual,
with specific profiles that may show the presence of particular
diseases [ 4, 12, 17, 18 ], as well as monitor environmental exposure,
microbiota, bacterial activity, pharmacokinetics, toxicokinetics, 
and other metabolic processes, for use in medical diagnostics [ 14,
22 ]. 

In addition to the routine biofluids analyzed in biomedical
science (blood, urine, feces, etc.), human breath is also a biofluid
matrix that contains a wealth of information, mirroring the
body’s health [ 23 ]. Although the main constituents of breath
are the same as those of air (primarily N2 , O2 , and CO2 )
[ 24 ], it also contains hundreds [ 16, 17, 25–27 ], and according
to some sources even thousands [ 28 ], of low-boiling-point [ 16,
18 ] VOCs [ 19, 20 ]. These occur in concentrations ranging from
ppt to ppm [ 22 ], along with non-volatile compounds present
its use, distribution and reproduction in any medium, provided the original work is properly 
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in microdroplets and breath aerosol [ 10 ], together carrying a
wealth of chemical information [ 11 ]. The VOCs and semi-VOCs
released from metabolic reactions occurring within cells in the
body are transported in the blood around the body to the lungs,
where they cross the blood–air barrier and enter the breath of a
human [ 17, 20, 29–31 ]. Human breath is therefore another biofluid
that, although rarely applied in routine clinical diagnostics to
date [ 10, 32 ], may provide valuable insights into an individual’s
metabolic [ 29, 33 ] and physiological [ 27 ] state, as well as systemic
metabolic processes [ 17 ]. Monitoring VOCs in breath can also
provide insights into diurnal metabolic patterns and is being used
in research to identify unknown human breath biomarkers [ 30 ].
Many biomarkers remain undiscovered because certain VOC
species have very short lifetimes [ 22 ] and/or occur only at very
low concentrations [ 22 ]. 

The advantages of using human breath as an analytical medium
to monitor human health and diagnose disease are manifold. The
nature of breath analysis which requires a subject to breath into
an offline sampling bag or a device to capture exhaled breath
condensate (EBC), or an online inlet to an instrument [ 4, 9, 11,
34 , 35 ]. This immediately makes this technique harmless [ 36 ],
noninvasive [ 9, 11, 12, 14 , 16, 18, 25, 27 , 34, 37–39 ], and avoids
the need for intrusive clinical practices for disease diagnosis
which is especially attractive in pediatrics [ 34, 37 ]. The ability
to perform online sampling further renders this technique rapid
[ 14, 25, 39 ], both in sample collection and results retrieval,
as it typically eliminates the need for sample preparation [ 16 ]
thereby underscoring its potential for clinical implementation.
Furthermore, due to the ease of sampling, its rapid nature, and the
absence of specialized personnel required to operate instruments
[ 40 ], the prospect of continuous health monitoring becomes a real
possibility, which allows for [ 11 ] early disease diagnostics [ 39 ] and
timely treatment decisions [ 21, 39 ]. The alteration of metabolic
processes starts at disease onset, well before any symptoms
appear, and typically only at later stages of a disease when the
illness is much more difficult to treat. 

One particular mass spectrometric technique, which has been
extensively used in breath analysis research in Switzerland, is sec-
ondary electrospray ionization high-resolution mass spectrome-
try (SESI-HR-MS). This soft ionization method can be applied to
both online and offline analyses, offering high sensitivity. When
coupled to high-resolution mass analyzers (e.g., Orbitrap, TOF),
it enables high-resolution [ 13 ] untargeted m/z feature detection
[ 26 ], with thousands of features detected across entire breath
profiles [ 12, 37 ]. It is semi-quantitative and may also be used in
targeted VOC analyses, where compound identification provides
valuable insights into the biochemical [ 25, 31 ] and metabolic
processes underlying diseases [ 12, 41 ]. Furthermore, SESI-HR-MS
is particularly effective for the analysis of polar molecules [ 21 ]. 

With SESI-HR-MS and breath analysis as an entity, there are,
however, also limitations and challenges. These revolve around
the differentiation between endogenous and exogenous [ 14 ] com-
pounds [ 24, 36 ], the general accuracy in compound identification
[ 40 ], and quantification with different breath analysis instrumen-
tation techniques [ 26 ]. This is further intertwined with a lack of
understanding of the metabolic processes leading to the detected
VOCs [ 14 ]. The lack of validation studies [ 4 ], standardization
[ 13, 36 ], and the practicalities surrounding instrumental mobility
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pose further challenges [ 18 ]. The advantages and limitations of
breath analysis research are therefore explored within this review.
Nonetheless, breath analysis is an emerging [ 12 ] and rapidly
growing field in medical diagnostics [ 11 ], with great potential for
the introduction of breath analysis into the clinical environment
in the future [ 19, 42 ]. 

2 Breath Analysis and Disease Research in 

Switzerland 

The field of breath analysis is undoubtedly expanding. To illus-
trate Switzerland’s position within this research domain, we 
conducted a bibliometric analysis using the Scopus database 
[ 43 ]. As of 4 September, 2025, a search for the term “Breath
Analysis” returned 43,926 publications. After refining the results 
to include only journal articles at the final publication stage,
35,366 records remained, spanning global research outputs since 
1930. Of these, 15,273 originated from European institutions and
1021 from Swiss institutions. An overview of the different research
institutes that have contributed in some way to breath analysis
research since 1930 has been outlined below and mapped onto a
map of Switzerland (Figure 1 ). The research institutes have been
listed by canton. The number of publications by researchers from
the respective Swiss institutes is indicated by the number after
the institute’s name. Agroscope and Vetsuisse-Fakultät are both 
inter-cantonal institutions, with multiple sites. 

Finally, a Scopus-based analysis was performed to assess the
contributions of funding agencies to successful breath anal- 
ysis projects. Figure 2 presents the number of publications
acknowledging each funding body. Since 2019, the Schweiz- 
erischer Nationalfonds zur Förderung der Wissenschaftlichen 
Forschung (Swiss National Science Foundation) has been the 
most prominent funding agency. 

It should however be noted that different publications will have
had varying holistic amounts associated with them. The data
in Figure 2 are from 2019 and therefore represent the most
recent contributions. The year 2019 was also the year of the last
comprehensive review on breath analysis research by Bruderer
et al. [ 1 ], from which the highlights mentioned in this review are
based (Figure 3 ). 

3 SESI-HR-MS: A Key Technology in Swiss 
Breath Research 

SESI-HR-MS is an instrumental technique used for the mon-
itoring of VOCs and semi-VOCs [ 39 ], as well as non-volatile
gaseous species [ 33 ], and is most well-known for its application in
breath analysis research. It is popular among the breath analysis
community in Switzerland, due to its soft-ionization nature, high
resolution (when coupled to a high-resolution mass analyzer), 
and high sensitivity [ 1, 44, 45 ]. It is a direct infusion technique
[ 46 ], which, in recent years, has evolved from an experimental
technology in the laboratory into a profiling tool for the clinical
setting [ 20, 47 ], used for biomarker discovery in breath research
[ 48 ]. It is an emerging technology with increasing popularity
[ 47 ] for VOC metabolite analyses [ 49 ], enabling real-time breath
Helvetica Chimica Acta, 2025
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FIGURE 1 Research institutes across Switzerland that have contributed to breath analysis research since 1930. 

FIGURE 2 Bar chart showing the top ten funders of breath analysis research by the number of papers published. 
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monitoring through repeated full mass scans, allowing for a
breath sample to be tracked and monitored [ 49 ]. 

3.1 Development of SESI-HR-MS 

SESI-HR-MS is one of the most recent advancements in breath
analysis research technology. The evolution of modern breath
Helvetica Chimica Acta, 2025
analysis began with the seminal work of Pauling et al. [ 50 ], who
detected over 250 compounds in a breath condensate sample
using offline GC-MS. Subsequently, John B. Fenn and colleagues
developed electrospray ionization (ESI), demonstrating the ion- 
ization of neutral molecules in both liquid and gaseous phases
[ 33, 51 ]. Building on this, Hill and co-workers later introduced
the concept of “Secondary Electrospray Ionization (SESI)” [ 33, 
52, 53 ], first exploited by Wu et al. [ 53 ] and Chen et al. [ 54 ]. A
3 of 28
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FIGURE 3 Comparison of the internal energy distribution P ( ε) 
for different ionization setups and different settings. The dotted line 
represents the average energy for a distribution. Reproduced from Kaeslin 
et al . with permission from the American Chemical Society. 
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major breakthrough occurred with the coupling of SESI to high-
resolution mass spectrometry (e.g., Orbitrap systems) [ 49, 55 ],
first demonstrated in Switzerland by García-Gómez et al. [ 56 ].
This integration significantly improved the sensitivity, resolution,
selectivity, and compound coverage for VOC analysis [ 39, 41, 49,
57 ]. Given the chemical complexity of exhaled breath, accurate
VOC identification requires high-resolution mass spectrometry
to resolve isobaric species and enable confident annotation of
metabolites and biomarkers [ 29, 49 ]. Consequently, SESI-HR-
MS has become a powerful tool for breath-based biomarker
discovery and clinical decision support [ 39, 41, 47, 56 ]. The
capacity of SESI-HR-MS to detect thousands of features, which
are essentially unidentified signals in the mass spectrum [ 55 ],
strengthens its use for biomarker identification when conducting
untargeted analyses [ 46, 55 ]. Further technical improvements,
such as the incorporation of an ion funnel by Meier et al. [ 35 ],
extended the accessible mass range up to 500 m/z [ 33 ] for online
breath profiling. As an ion source, SESI is compatible with any
atmospheric pressure ionization mass spectrometer [ 19, 58 ] and
can also operate within ion mobility systems [ 39, 52 ]. 

Despite its relatively recent emergence in analytical science, SESI-
HR-MS has already been applied across diverse domains. These
include clinical and biomedical research [ 29, 39 ], exhaled breath
studies [ 1, 22, 46, 59 ], disease detection and monitoring [ 29,
39, 60 ], and assessment of therapeutic interventions and health
status [ 33, 60 ]. Beyond clinical contexts, SESI-HR-MS has been
4 of 28
employed to analyze VOC emissions from plants and animals [ 22,
39 ], monitor outdoor and indoor air quality [ 22 ], investigate cell
culture headspace [ 22 ], and study pharmacokinetics [ 20, 60–62 ]. 

3.2 Ionization Mechanisms 

SESI-HR-MS detects analyte molecules within a fluid through
an ionization process. When analyte molecules enter the SESI
source, they interact with the electrospray plume composed of
charged droplets, leading to the formation of gas-phase charged
species that are subsequently detected by the HR-MS system [ 39,
46, 48 ]. Although the detailed ionization mechanism and ion-
molecule reaction pathways in SESI are not yet fully understood
[ 23, 57 ], and only a few fundamental investigations of SESI
are available [ 57 ], two main models have been proposed. One
hypothesis suggests that analyte molecules are solvated within 
charged electrospray droplets, where ion-molecule reactions 
occur before the charged products are released back into the gas
phase for detection [ 33, 46 ], a mechanism which would be largely
dependent on analyte solubility. Alternatively, Rioseras et al. 
[ 33 ] proposed that reagent ions evaporate from the electrospray
droplets into the gas phase and subsequently react with neutral
analyte molecules, forming product ions via gas-phase ion–
molecule reactions, a pathway which would likely be influenced
by the thermochemistry of the reacting species. 

In either case, the principal product ions are protonated
molecules (MH+ ) [ 57 ] in positive mode [ 39, 48 ], and deprotonated
molecules (M-H− ) in negative mode [ 39, 48 ], with ligand or ion
switching believed to play a major role [ 23 ]. When the electro-
spray consists of only water, the reactive species are thought to be
(H2 O)n H+ clusters [ 39, 63 ]. Unlike the direct proton transfer reac-
tions [ 46, 64, 65 ] seen in selected-ion flow-tube mass spectrometry
(SIFT-MS) and proton-transfer-reaction mass spectrometry (PTR-
MS) in the presence of H3 O+ reagent ions forming MH+ , or the
direct hydrogen abstraction process in SIFT-MS producing M- 
H− species by the newly achieved negative reagent ions (OH− ,
O2 

− , O− , NO2 
− , and NO3 

− ), Dryahina et al. [ 66 ] proposed a ligand
switching pathway for SESI. This would involve a water molecule
from a (H2 O)n H+ cluster exchanging with the analyte molecule 
to produce a charged analyte-water cluster M(H2 O)n H+ . Within 
the pathway to the mass spectrometer, water molecules evaporate
from this cluster, leaving behind the residual MH+ (or M-H− 

in the negative mode) [ 39 ]. The analyte solvation and ligand
switching theory also supports the softness of SESI, consistent
with collision-induced dissociation (CID) experiments [ 46 ]. At
higher analyte concentrations, protonated dimers have also been 
reported to be produced [ 48, 67 ]. 

3.3 Electrospray Solution and System 

Optimization 

The composition of the electrospray solution strongly influences 
the ion–molecule chemistry and, consequently, the nature of 
the product ions generated in SESI-HR-MS. Adjusting the spray
solvent and dopants may therefore enhance ionization efficiency 
and improve data quality. Most SESI studies employ water [ 39 ]
as the primary solvent, which has repeatedly been shown to
be highly effective for ionization [ 39, 64 ]. Some investigations,
Helvetica Chimica Acta, 2025
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however, have utilized methanol-water mixtures (typically 1:1,
v/v) [ 39, 53 ] or combinations with other organic solvents such
as acetonitrile and isopropanol, either individually or mixed [ 48,
68 ]. To promote ionization, various dopants have been added to
these solvents, including formic acid [ 20, 39 ], acetic acid [ 39,
48, 69–71 ], and the ammonium formate salt [ 39, 72 ], at varying
concentrations [ 39 ]. The most widely used solution remains
0.1% formic acid in water [ 48, 73 ]. Other studies explored more
unconventional dopants, including metal salts, which can form
characteristic adduct ions and extend the detectable range of
compounds [ 39, 74–76 ]. 

A recent study by Wüthrich et al. [ 48 ] investigated metal salt
doping for untargeted breath metabolomics using SESI-HR-MS.
The authors tested both NaI and AgNO3 dopants in a proof-
of-principle study using a single human subject. NaI showed
fewer and similar metabolite features compared to the standard
formic acid solution. AgNO3 , however, produced a wider variety
of metabolite species in the mass spectra compared to when using
the standard formic acid solution, including increased detection
of sulfur compounds, primary amines, and unsaturated hydrocar-
bons. These findings align with previous reports showing a strong
affinity of AgNO3 for sulfur-containing species in breath [ 10,
48 ]. These results demonstrate that modifying the spray solution
and, consequently, the ion chemistry may reveal new metabolic
features and potential biomarkers, thus opening new avenues for
SESI-HR-MS breath analysis. Nonetheless, formic acid solutions
still provide the most consistent signal intensity, sensitivity, and
economic practicality, and thus remain the preferred choice for
most applications. 

Beyond the spray solution, several hardware parameters also
critically influence SESI performance. The type of capillary—
commonly fused silica, its inner diameter, and the alignment
between the sample inlet, the electrospray capillary, and the
mass spectrometer inlet are all important optimization factors
[ 39 ]. Recent developments include the integration of interfaces
that measure breath flow rates and CO2 concentrations, thereby
improving standardization and reproducibility in online breath
sampling [ 47 ]. 

3.4 Comparison of SESI-HR-MS With Other 
Techniques 

The most commonly employed and sensitive analytical methods
[ 60 ] for breath analysis include SESI-HR-MS, SIFT-MS, and
PTR-MS for online [ 19, 57 ] analysis, and GC-MS for offline [ 38,
49 ] analysis. For breath analysis, SESI-HR-MS offers several
advantages over SIFT-MS and PTR-MS. It has been reported
to achieve higher sensitivities [ 23 ], particularly for polar (i.e.,
amines) and higher m/z compounds [ 57 ], compared to the other
online methods [ 44, 48 ]. Like SIFT-MS and PTR-MS, SESI-HR-
MS not only requires no-sample pre-treatment which simplifies
workflows but also precludes sample pre-concentration, a process
that is feasible with GC-MS [ 47 ]. 

Unlike SIFT-MS, which provides absolute quantification based
on well-characterized ion–molecule reaction kinetics, both PTR-
MS and SESI-HR-MS are semiquantitative [ 33 ]. The kinetic rate
constants and reaction mechanisms for SIFT-MS and PTR-MS
Helvetica Chimica Acta, 2025

 C
are well established [ 44 ], whereas the fundamental ionization
chemistry of SESI-HR-MS remains less understood. Conse- 
quently, SESI ionization efficiencies are matrix- and compound- 
dependent, often requiring external gas standards for accurate 
quantification [ 55 ]. This makes SESI-HR-MS somewhat more
labor-intensive than the other online MS techniques. 

An advantage of the SESI-HR-MS system, however, compared 
to SIFT-MS or PTR-MS, is its ability to ionize species at
atmospheric pressure [ 60 ], whereas SIFT-MS and PTR-MS have
flow tubes that operate at much reduced pressures [ 19, 47 ].
Operating at atmospheric pressure enhances ionization effi- 
ciency and enables straightforward coupling to commercial high- 
resolution mass spectrometers, such as Orbitrap mass spectrome- 
ters [ 47 ] which can routinely achieve mass resolutions exceeding
140,000 and thus provide exceptional selectivity. Nonetheless, 
these advanced analytical systems rely on sophisticated and costly
instrumentation, limiting their routine clinical deployment [ 47 ]. 

Recent work compared SESI-HR-MS with plasma ionization (PI)
[ 23 ] and PTR-HR-MS [ 57 ]. To conduct a direct comparison, Zeng
et al. [ 23 ] separately coupled both a commercially available PI
source and a SESI source to the same HR-MS instrument and
measured the breath of two healthy individuals longitudinally, 
in a proof-of-principle study. In total, 58 breath samples were
collected on both ion sources, yielding 2296 and 2209 m/z features
for PI and SESI, respectively. Although each system achieved rich
spectral profiles, only 60% of the features overlapped between
the two techniques. The signal-to-noise ratio (S/N) was markedly
higher for SESI-HR-MS (median 115, IQR 408) than for PI (median
5, IQR 5). Both achieved ppt-level detection limits for some
species, but SESI-HR-MS offered superior S/N performance. The 
discrepancy in spectral fingerprints likely reflects differences 
in ionization chemistry: SESI primarily produces protonated 
or deprotonated species, whereas PI tends to yield oxygenated
plasma adducts, complicating direct comparison of results. 

To compare SESI-HR-MS with PTR-HR-MS, Bruderer et al. 
[ 57 ] simultaneously measured the exhalations and examined
the spectra from 14 healthy subjects, using 97 reference gas
standard species from 9 chemical classes produced from a liquid
evaporation system. For this experiment, a Vocus PTR-TOF
instrument (TOFWERK AG, Thun, Switzerland) was employed 
as the PTR system. This portable device was temporarily installed
at the University Children’s Hospital Zurich to allow a direct
comparison with a Super SESI ion source (FIT, Málaga, Spain)
coupled to a Q-TOF mass spectrometer (Triple TOF 5600 + ,
SCIEX, Toronto, Canada). Both systems provided a similar
resolving power of approximately m/ Δm ≥ 15,000. While both
methods mainly produced protonated analytes in positive mode, 
their ionization conditions differed substantially: SESI operates 
at atmospheric pressure in a compact ion source, whereas PTR-
HR-MS ionization occurs in a 10 cm drift tube at a pressure
of 1–3 mbar. The study found that SESI-HR-MS outperformed
PTR-HR-MS at higher mass ranges ( m/z 150–250 and up to 500),
while PTR-HR-MS was more sensitive at lower masses ( m/z 50–
150). This distinction is important because higher-mass features 
are often associated with more specific metabolic biomarkers,
whereas low-mass VOCs tend to be common compounds that
may overlap due to the presence of fragments. SESI-HR-MS
detected 828 total spectral features versus 491 for PTR-HR-MS,
5 of 28
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with 797 unique to SESI and 374 unique to PTR. However, PTR-
HR-MS was more efficient at ionizing compounds with lower
proton affinities. These findings confirm that SESI-HR-MS
and PTR-HR-MS are complementary: SESI is advantageous for
higher-mass, polar compounds and broader m/z coverage, while
PTR-HR-MS excels for small, low-proton-affinity VOCs. 

Gisler et al. [ 60 ] assessed reproducibility by analyzing exhaled
breath before and after ingestion of a peppermint oil cap-
sule at two sites using identical SESI-HR-MS platforms. They
observed 57 additional features significantly associated with pep-
permint ingestion, and repeated measurements indicated a core
set of approximately 35–40 VOCs that were consistently detected
across sessions. The study supports a more complex peppermint
metabolism than previously assumed and shows that observed
differences were driven largely by time, regarding post-ingestion
and inter-individual physiology, for example, metabolism and
absorption, rather than instrumental effects. 

Because untargeted SESI-HR-MS yields many unresolved fea-
tures, Wüthrich et al. [ 59 ] compared SESI-HR-MS direct breath
measurements with dynamic headspace vacuum in-tube extrac-
tion gas chromatography mass spectrometry (DHS-V-ITEX-
GC-MS) and LC-MS [ 2 ] EBC measurements, in 16 partici-
pants. GC-MS provided robust structural annotations but mostly
detected exogenous compounds, for example, oral-care addi-
tives. LC-MS [ 2 ] detected numerous features, especially with DIA,
with chemical classes assigned in silico; in positive mode, amino
acids and amines were common, and in negative mode, carboxylic
acids predominated. Overlap with SESI features was approxi-
mately 25% for LC-MS and around 5% for GC-MS, with coverage
spanning the SESI m/z range. This highlights that combining
online SESI-HR-MS with offline orthogonal methods provides
the most reliable attribution and broader chemical coverage.
Table 1 compares key analytical platforms for breath VOC analysis
in terms of ionization, detection limits, resolution of isomers,
quantification, and clinical suitability. 

3.5 Beyond Gas-Phase: Aerosol Sampling in 

SESI-HR-MS 

Aerosolized formulations are increasingly used for drug and
supplement delivery, so reliable chemical characterization and
quantification of species within these aerosols is essential
to screen for constituents, by-products, and impurities [ 45 ].
Although most SESI-HR-MS work targets gas-phase measure-
ments, Semren et al. [ 45 ] investigated direct aerosol analysis with
SESI-HR-MS in two settings: (i) exhaled breath from volunteers
after inhaling aerosols from commercial devices, and (ii) pro-
grammable syringe-pump introduction of aerosols that mimic
breathing patterns. In these experiments, SESI-HR-MS detected,
and MS/MS-confirmed, several compounds, including caffeine,
melatonin, cannabidiol, chloroquine, and hydroxychloroquine.
In contrast, azithromycin and vitamin B12 were not detected in the
generated aerosols; however, the vitamin B12 breakdown product
5,6-dimethylbenzimidazole was observed, consistent with ther-
mal degradation during aerosolization. The study highlights
that device conditions, for example, temperature and residence
time, can influence aerosol chemistry. The research therefore
demonstrates the feasibility of using SESI-HR-MS to profile
6 of 28
aerosolized active pharmaceutical ingredients and their transfor- 
mation products in real-time. 

4 Advantages and Limitations: SESI-HR-MS in 

Context 

Like any analytical platform, SESI-HR-MS possesses notable 
strengths along with inherent limitations. In this section, we
summarize advantages and constraints as reported in the recent
literature, and emphasize research priorities necessary to improve 
performance and facilitate clinical translation. 

4.1 SESI-HR-MS Advantages 

SESI-HR-MS excels at trace-level VOC analysis in exhaled breath
[ 55 ], enabling applications in therapeutic drug monitoring (TDM)
and pharmacokinetics [ 20 ], interrogation of metabolic processes
[ 20 ] and clinical use cases [ 60 ] such as continuous health moni-
toring [ 24, 59 ], as well as disease detection. These capabilities arise
from features detailed below, including real-time online sampling 
with minimal preparation, broad chemical coverage particularly 
for polar species, and coupling to high-resolution mass analyzers
that afford exceptional selectivity. 

4.1.1 An Online Technique 

A key advantage of SESI-HR-MS as a real-time online method,
compared with offline chromatographic approaches such as GC- 
MS and GC × GC—ToF [ 47, 77 ], is the provision of instant results
[ 30 ] with minimal sample preparation, eliminating chromato-
graphic separation and extensive handling steps [ 22, 23, 29, 33 , 39,
58, 60, 78 ]. This reduces lengthy analysis procedures and sample
storage, and as a result, the introduction of artifacts or other
contaminants [ 29 ], which may complicate data processing and
compound identification [ 22, 32, 47, 79 ]. Work has also been done
by Fido et al. [ 80 ] to investigate the presence of positive and
negative artifacts from sampling bags. The online format also
supports high throughput and time-resolved, for example, breath- 
by-breath measurements, aligning with prospects for continuous 
health monitoring in clinical settings [ 39 ]. Furthermore, as with
SIFT-MS and PTR-MS, another advantage of SESI-HR-MS for its
use in breath analysis is its non-invasive nature [ 24, 35, 48, 55 ,
78 ]. This greatly improves patient experience during metabolomic
analyses, disease detection, or drug monitoring [ 20, 39, 60 ].
The wide detection range and metabolome coverage [ 20, 32 ]
exhibited by SESI-HR-MS make this technique particularly adept 
for targeted and untargeted analyses [ 47 ] of metabolites and thus
for biomarker identification. 

4.1.2 Soft Ionization Technique 

The ability of SESI-HR-MS to be used for a myriad of applica-
tions stems from its soft ionization properties [ 39, 46 ], which
reduce fragmentation because product ions are formed with low
excitation and low internal energies [ 46, 60, 81 ]. This simplifies
mass spectral data interpretation and therefore, compound iden- 
tification [ 46, 48 ]. The extent of this softness was investigated by
Helvetica Chimica Acta, 2025
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TABLE 1 Comparative overview of SESI-HR-MS, PTR-MS, SIFT-MS, and GC–MS for breath VOC analysis. 

Attribute/ 
Method SESI-HR-MS PTR-MS SIFT-MS GC–MS 

Ionization Secondary electrospray 
ionization; 
cluster-/ligand-switching and 
protonation/deprotonation 
pathways; ambient 

Proton-transfer 
(typically H3 O+ ; 
sometimes NO+ /O2 

+ 

variants) in drift tube 

Selected reagent ions 
(H3 O+ , NO+ , O2 

+ ) 
with known kinetics 
in flow tube 

EI (70 eV) most 
common; CI optional; 
preceded by GC 

separation 

Pressure/source 
conditions 

Atmospheric-pressure ion 
source; coupled to HRMS 
(vacuum downstream) 

Reduced pressure 
( ∼ 1–3 mbar), 
controlled E/N in 
drift tube 

Reduced pressure 
( ∼ 0.3–1 mbar) in 
flow tube 

GC at ambient carrier 
flow; MS source 
under high vacuum 

Pre- 
treatment/separation 

None (online, direct breath) None (online) None (online) Yes 
(offline/near-online): 
bags/TD 

tubes/cryo-traps; 
optional 
derivatization; 
chromatographic 
separation 

Typical LoD Low-ppb to ppt (analyte and 
humidity dependent) 

ppt–low-ppb (best for 
high proton-affinity 
species) 

ppt–low-ppb (for 
many targets with 
known kinetics) 

Low-ppt to ppb with 
preconcentration; 
typically ≥ ppb 
without 
preconcentation 

Isomers/isobars HR helps isobars; isomers not 
resolved without MS/MS/IMS 
or prior separation 

No chromatographic 
separation; limited 
isomer 
discrimination (some 
via reagent/kinetics), 
isobars unresolved at 
unit-res 

Kinetic channels 
help some cases, 
but isomers 
generally not 
resolved; unit-res 
limits isobar 
separation 

GC resolves many 
isomers (column 
dependent); MS 
libraries aid 
confirmation 

Quantification Semi-quantitative; external gas 
standards needed; matrix & 

humidity dependent 

Quantitative with 
calibration; absolute 
quant feasible where 
rate constants known 

Absolute quant from 

known kinetics for 
many species; 
calibration still 
beneficial 

Quantitative with 
calibration/IS; 
accuracy depends on 
trapping & recovery 

Typical analyzers Orbitrap HRMS, Q-TOF/TOF; 
optional IMS coupling 

TOF (PTR-TOF) 
dominant; some 
quadrupole 

Quadrupole most 
common; some TOF 
implementations 

Quadrupole 
(workhorse), 
TOF/Q-TOF; high-res 
GC–Orbitrap 
available 

Temporal resolution Seconds (breath-by-breath 
feasible) 

Seconds Seconds Minutes to hours per 
run 

Clinical practicality Noninvasive, high throughput; 
needs calibration & robust 
SOPs 

Noninvasive, 
quantitative; 
specialized 
instrument 

Noninvasive, 
absolute quant; 
specialized 
instrument 

Widely available; 
slower, 
prep-intensive; strong 
identification 
confidence 
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Kaeslin et al. [ 46 ], who claimed the SESI ionization procedure to
be even softer than ESI under specific settings and conditions [ 39,
46, 48 ]. The authors characterized the softness of SESI by using
thermometer ions to obtain a clear understanding of the internal
energy distribution of ions and the fundamental ion chemistry
occurring within SESI [ 46 ]. Despite previous reports of significant
Helvetica Chimica Acta, 2025
in-source fragmentation of analytes [ 23, 46, 60, 82 ] and the
standard settings used within the SESI community to date being
relatively harsh; if settings are properly fine-tuned, the system’s
full soft ionization potential may be exploited [ 46 ]. Volatile
benzylamines, which have known bond dissociation enthalpies 
and identical dissociation pathways, were used to form differently
7 of 28
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substituted benzylammonium ions. It was found that the SESI
mechanism may be both analyte and temperature-dependent
and that to achieve softer ionization, proper instrument tuning
is necessary. Kaeslin et al. [ 46 ] found that lower S and RF
voltages and a lower transfer capillary temperature encouraged
the solvation of analytes, and therefore much softer ligand
switching mechanisms as opposed to a harder gas-phase proton
transfer collisional activation mechanism [ 46 ]. The authors also
found that these settings came at the expense of sensitivity. 

4.1.3 High-Resolution and Sensitive Technique 

When SESI is coupled to high-resolution mass analyzers, breath
analysis can achieve a resolving power of over 100,000 [ 22, 60 ],
improving the discrimination of isobaric interferences and overall
sensitivity that is essential for confident VOC assignment in
clinical contexts. High resolution and exact mass substantially
aid annotation, although unambiguous identification typically
still benefits from MS/MS and/or orthogonal evidence. SESI-HR-
MS also offers high sensitivity, with low-ppb to ppt detection
demonstrated for many compounds [ 22, 29, 60 ]. Sensitivity
is analyte- and matrix-dependent and is influenced by gas-
phase properties and ion chemistry: responses often correlate
with proton affinity, gas-phase basicity, polarity, and dipole
moment [ 39, 48, 67 ]. Humidity and other sampling conditions
can further modulate signal levels and adduct patterns [ 39,
78 ]. Optimized source settings and solvent/dopant choices are
therefore important to balance softness, signal intensity, and 
selectivity. 

4.2 SESI-HR-MS Limitations and Challenges 

Despite the strengths of SESI-HR-MS and its promise for routine
applications in clinical monitoring and disease detection, trans-
lating breath analysis into clinical practice remains challenging
[ 32, 47 ]. 

4.2.1 Identification and Quantification 

Because the SESI-HR-MS mechanism and the ion-molecule
reactions discussions are still under debate [ 33, 39, 44, 46 , 66,
83 ], accurate and unambiguous biomarker identification [ 29, 33 ]
and quantification [ 33 ] of VOC species is challenging. Most SESI-
MS studies rely primarily on MS1 data, which are susceptible to
misassignments [ 55 ] and spectral overlaps [ 55 ], and have a limited
ability to differentiate isomers [ 59 ]. 

Although SESI-HR-MS exhibits very high-resolution capabilities,
making the separation of isobars possible, unlike SIFT-MS, SESI-
HR-MS is unable to separately quantify isomers [ 58 ]. This renders
the interpretation of the underlying metabolic processes and
biological pathways complicated [ 59 ]. In addition, SESI-HR-MS
does not involve a prior chromatographic or separation step [ 29,
48, 58, 59 ]. The flow-injection nature of SESI-HR-MS further hin-
ders robust feature annotation, often requiring complementary
methods, such as GC-MS and LC-MS, to confidently identify
compounds [ 59, 84 ]. 
8 of 28
Clinically meaningful interpretation requires accurate quantifi- 
cation. SIFT-MS can achieve absolute quantification based on 
established ion-molecule rate coefficients; PTR-MS is often quan- 
titative when calibrated to appropriate standards, though rate 
constants are also universally available. In contrast, SESI- 
HR-MS is generally semi-quantitative and requires external 
calibration with gas-phase standards, procedures that are time- 
consuming and labor-intensive. Gas standards are typically 
generated via a dynamic dilution of reference vapors or controlled
liquid evaporation [ 39 ]. Examples of this are the internal standard
addition system described by Wüthrich et al. [ 85 ] and the gas-
phase standard delivery system as described by Streckenbach 
et al. [ 86 ] (Figure 4 ). 

An example of the use of reference standards is found in the
work of Liu et al. [ 22 ] who developed a quantitative method for
a SESI-HR-MS system using a Q-Exactive quadrupole Orbitrap 
HR-MS. The authors investigated eight representative VOCs, 
which are typically of interest in studies using SESI-HR-MS,
and were able to demonstrate that their system could produce
calibration curves with R2 values reaching R2 = 0.993–0.999 
for each of the eight VOCs between the concentrations of 0–
10 ppbv , by using a dynamic dilution calibrator, in N2 as the
carrier gas. They also demonstrated LODs which ranged from
3 to 15 pptv , sensitivity values between 3.82 ×105 and 2.70 ×107 ,
and coefficients of variation of ≤ 6% and ≤ 10% for intra- and
inter-day measurements. Similar to this work, Wüthrich et al.
[ 78 ] developed a modular dynamic vapor generator that could
produce gas standards at varying concentration levels under 
controlled conditions. They tested the use of this system for
the quantification of short-chain fatty acids: hexanoic acid, 
pentanoic acid, butyric acid, propionic acid, and acetic acid—
and demonstrated excellent linearity ( R2 = 0.97–0.99) with low
limits of detection and quantification in the ppb-ppt ranges under
dry and humid (RH 95%) conditions [ 78, 87, 88 ]. An increased
humidity generally demonstrated better LOD and LOQ values, 
with the lowest detection limit of the fatty acids analyzed being
0.71 ppt at RH% = 95% for butyric acid. Another observation by the
authors was that the longer the fatty acid chain length, the better
the sensitivity obtained, which was inversely proportional to the
compound’s Henry’s constant. Even when the fatty acid species
were mixed, the sensitivity remained constant for the fatty acids.
These authors were therefore able to develop a robust calibration
unit. 

Challenges in SESI-HR-MS VOC identification and quantifi- 
cation were highlighted by Käser et al. [ 55 ] who investi-
gated methods for improved accuracy. They evaluated full- 
scan (FS), selected-ion monitoring (SIM), and parallel reaction 
monitoring (PRM) on exhaled breath from 12 adults, focus-
ing on pyridine, monoterpenes (e.g., limonene, α/ β-pinene),
and other endogenous compounds, for example, C5 -C10 alde- 
hydes. Limonene and pyridine were identified and quantified, 
supported by MS2 , whereas α/ β-pinene remained challenging 
to quantify separately. The aldehydes were difficult to measure
due to their low abundance and overlapping features, such as
ketone interferences. The combination of SIM and PRM improved
selectivity and quantitative accuracy. The compounds tested 
were also shown not to be affected by ion competition. The
study concludes that reliable identification and quantification 
rarely come from m/z alone; orthogonal methods remain pivotal,
Helvetica Chimica Acta, 2025
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FIGURE 4 The internal standard addition and gas delivery systems used in recent breath analysis work. Reproduced from Wüthrich et al. [ 85 ] 
with permission from ACS Publications, and Streckenbach et al. [ 86 ] with permission from IOP SCIENCE. 
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and absolute quantification without external standards is a key
research priority2 2 . 

4.2.2 Matrix Effects 

Although calibration units may be used for accurate quantifica-
tion of specific substances in an ideal setting, the reality is that
the breath matrix is fairly complex, and accurate identification
and quantification of VOC species in real breath samples are
influenced by matrix effects such as ion suppression and ion
competition, leading to errors [ 39, 44 ]. 

Ion suppression is a matrix effect in which contaminants and
other species present in a sample reduce the efficiency of
ionization for target compounds by competing for reagent charge
carriers [ 49, 89 ]. This results in decreased signal response, and
has been widely reported across analytical methods [ 44, 57,
90–97 ], including SESI-HR-MS [ 49 ], although a fundamental
understanding of the ion-suppression mechanism in SESI-HR-
MS is still lacking [ 44 ]. It is suspected that the ion suppression
effect is more prominent for online techniques, because the
sample is not pre-treated and there is no effort to remove any
matrix compounds which could induce suppression [ 44 ]. Ion
suppression causes issues with VOC quantification, sensitivity
and reproducibility, limiting the potential of SESI-HR-MS in
untargeted VOC profiling for metabolomic studies [ 49 ]. 
Helvetica Chimica Acta, 2025
To gain further understanding of ion-suppression mechanisms 
within the SESI-HR-MS, Wüthrich et al. [ 44 ] investigated this
phenomenon. The authors captured, thawed, and injected EBC 

into the previously described gas-phase calibration evapora- 
tion chamber unit, along with other VOC standards, which
were thought to induce ion suppression. These spiked VOCs
included pyridine, deuterated acetic acid, deuterated acetone, 
and acetone. Acetone was suspected of causing a significant
ion-suppression effect, due to its high abundance in breath.
When tested, a 30% reduction was observed in many EBC
m/z features when 1 ppm of acetone, which is around the
concentration expected in breath, under humid conditions, 
was simultaneously injected into the SESI-HR-MS. This high- 
lighted the importance of accounting for acetone-induced ion 
suppression in SESI-HR-MS studies. A mechanistic hypothesis 
proposed by the authors is based on the ligand switching ion-
molecule process previously described, when charge transfer 
to the analyte molecule is mediated by the exchange with
a water molecule within a water cluster. They argued that
if an abundant molecule, such as acetone, could replace the
analyte in the water cluster, this would reduce the efficiency
of ionization for the analyte molecule of interest. Gas-phase
acid-base chemistry was also suggested by the authors to be
involved in ion suppression when they found that pyridine
exhibited the most substantial ion suppression effect on the
analyzed VOCs, which was attributed to its relatively high
basicity. 
9 of 28
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The authors describe how dilution of a breath sample by an addi-
tional inert carrier gas flow could help alleviate suppression by
reducing the concentration of the suppressing species. However,
the success of this would also depend on the chemistry of the
suppressing compounds and analytes, as well as the final con-
centrations. Diluting compounds would, however, inadvertently
reduce the signal responses of the m/z features and therefore
the sensitivity. The study also suggested that selective filtering
approaches could be employed to remove unwanted suppressing
compounds. Further investigations are needed to evaluate the
ion-suppressive effects of humidity and to extend assessments
across a broader range of compound classes. In addition, the
influence of spray solution composition warrants examination as
a potential strategy to enhance ionization efficiency. 

Ion competition within the C-trap of an Orbitrap HR-MS is
another mitigating factor which has an adverse effect on the
reproducibility and sensitivity of the SESI-HR-MS system, and
has been documented and investigated in the work of Lan et al.
[ 49 ]. Ion competition occurs when the C-trap is overfilled with
the most abundant VOC analytes, rendering the less abundant
VOCs to be minimally detected [ 49 ]. However, this effect may
be alleviated by applying spectral stitching [ 49, 98 ]. Lan et al.
[ 49 ] found that by splitting the spectral range of m/z = 50–
500, into four windows, a compromise was achieved between
scanning speed and lessening of ion competition for the purposes
of analyzing bacterial culture and human breath samples. 

4.2.3 Endogenous and Exogenous Compound 
Identification 

A particular challenge in breath analysis, which encompasses
all VOC analysis techniques, is deciphering whether the VOCs
measured are of exogenous, that is, from the environmental
background and re-exhaled, or of endogenous origin, that is,
from metabolic origin within the body; of which human breath
contains both [ 29, 99 ]. Interfering contaminants may also come
from the analytical technique itself, such as phalates which
have out-gassed from O-rings or from the laboratory such as
polydimethylcyclosiloxanes, which are common plasticizers [ 33 ].
Exogenous species have also been reported to interfere in EBC,
for example, in the work of Wüthrich et al. [ 59 ], who mostly
found oral hygiene product additives such as menthol in their
EBC samples when using GC-MS. As SESI-HR-MS can measure
a broad range of masses (up to 500 m/z ) [ 57, 99 ], airborne
plasticizers can also contaminate spectra [ 99 ]. 

To alleviate the interference of exogenous VOCs on mass spectra
within SESI-HR-MS, a recent study by Weber et al. [ 99 ] inves-
tigated the potential of using a VOC activated carbon filter for
subjects to inhale through, before exhaling into the online SESI-
HR-MS system. The authors explored the differences in breath
profiles of 24 adult participants through pairwise breath analysis
measurements to conduct a direct comparison of spectra, as
well as the feasibility for subjects and operators to incorporate
this into the clinical field. It was found that when using the
VOC filter, a decrease was observed in high-intensity plasticizer
contaminants, as well as some metabolites that were also present
in the laboratory background air. Operational challenges were,
however, also identified including the lack of feasibility for
10 of 28
pediatric patients who were not able to inhale through the VOC
filter. 

4.2.4 Lack of Validation and Standardization 

Finally, a lack of standardization [ 47, 78 ], limited reproducibility
[ 78 ], and a lack of validation from multicenter trials [ 32 ] for
breath analysis methods [ 32 ] are perhaps the most hindering
factors for this technique to enter the clinical setting. It is
mainly due to most breath analysis instruments, such as SESI-
HR-MS [ 47 ], still being at the prototype stage. This stems from
a lack of benchmarking or comparability studies conducted, 
involving at least one other breath analysis technique [ 60 ].
Nonetheless, researchers from Swiss institutions have recently 
completed work to improve the state of SESI-HR-MS stan-
dardization, which moves the transition and integration of 
SESI-HR-MS into the routine clinical environment another step 
forward. 

Gisler et al. [ 32 ] established and applied an interoperability
framework for the standardized data acquisition across multiple 
sampling sites using SESI-HR-MS. The authors developed a 
quality control procedure using a gas standard containing eight
compounds, for use in advance of breath sampling. The authors
obtained 255 breath samples from nine healthy adult controls
(30 ± 5 years) across three study sites (Zurich, Basel, and
Guangzhou). They developed a standard operating procedure 
for data collection and analyzed data using a patented data
processing pipeline. A technical variability of 20% was found
from the SESI-HR-MS instrument itself. Approximately 850 core 
breath features were identified. High inter-subject variability was 
observed among certain metabolic classes, such as amino acids
and fatty acids, while other regions including the TCA cycle,
were relatively stable across subjects. The core breath features
identified mainly corresponded to amino acid, xenobiotic, and 
carbohydrate metabolic pathways. For each site, however, a batch
effect was observed, which was corrected using ComBat. The
authors indicate that this interoperability framework will act as a
steppingstone for the design and implementation of future mul-
ticenter clinical studies. Some limitations to this study should,
however, be noted, such as the small number of sampling sites
(three) as well as limited geographical diversity (Zurich, Basel,
and Guangzhou), reducing the generalizability of the subjects 
studied in this work. Furthermore, the sampling took place over 6
weeks, which may have missed any long-term metabolic process
variations among subjects. No information regarding the subjects’
diets or lifestyles that may alter the breath metabolome from
exogenous VOCs was considered either. Batch correction may 
also introduce unwanted artifacts into the data. 

Standardization efforts were demonstrated by Singh et al. [ 47 ],
who presented a collection of instrumental developments with 
the aim of standardizing the SESI-HR-MS analytical workflow in
breath analysis. The study introduced a new interface to standard-
ize exhalation flow rates by measuring the breath volume and CO2 
concentrations exhaled. Four healthy subjects (33 ± 8 years) were
tested over a month and each gave 49 exhalations, for which the
system’s repeatability was assessed using gas reference standards
and was found to have a coefficient of variation of 2.9%, for the
standards. To assess the reproducibility of breath measurements,
Helvetica Chimica Acta, 2025
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three aldehyde classes were examined, which are considered
indicators of oxidative stress in the body. A systematic signal
decay in repeated measurements of shorter chain aldehydes was
observed, for which a steady state was reached after the third or
fourth subsequent exhalation. Longer-chain aldehydes showed
steady-state concentration levels much sooner compared to short-
chain aldehydes. The authors hypothesized that this reasoning
was due to the higher blood-to-air partitioning coefficients of
the shorter aldehyde chain molecules. It was also found that
the exhalation flow rates, as well as the type of mouthpiece
filter used, significantly impact the breath profile achieved. The
authors found an intra-subject variability of 6.7% (median CV,
after excluding the first three exhalations), and an intersubject
variability of 48.2% (median relative difference), for the aldehy-
des. The study further mentions that the intersubject variability
is consistent with aldehyde variability in blood. Moreover, it was
found that each of the 27 aldehydes analyzed in this work corre-
lated strongly with the aldehyde correlation network, reflecting
the similar metabolic origins of these species in the body. The
authors demonstrated that reproducibility is strongly dependent
on the site of aldehyde exchange in the respiratory tract and that
the instrumental interface achieves low intra-subject variability.
Finally, the study recommends that to minimize variability within
breath samples, at least six subsequent exhalations should be
conducted after excluding the first three, to capture a steady
state. 

5 Advances in Breath Analysis for Asthma 

Asthma and other wheezing disorders are among the most
common respiratory diseases in adults and children [ 100 ], with
country-level prevalence ranging from 5% to 20% [ 11 ]. The World
Health Organization (WHO) estimated that approximately 339
million people worldwide had asthma in 2020 [ 101 ]; up from 315
million in 2014 [ 102 ] and 334 million in 2019 [ 103 ]. Five percent of
asthma cases are considered severe [ 1, 16, 104–109 ]. Asthma is a
chronic, inflammatory disease [ 110 ] of the lower respiratory tract
causing variable airflow limitation, airway hyperresponsiveness,
and episodic symptoms such as wheezing, dyspnea, cough, and
chest tightness [ 102–104, 106, 111–115 ]. Its multifactorial etiology
involves genetic and environmental factors, while comorbidities
and lifestyle contribute to disease burden, which significantly
impairs quality of life and may be life-threatening in severe cases
[ 107, 109, 116–118 ]. 

Identifying abnormalities in air flows, via pulmonary function
testing [ 103 ], that would be indicative of asthma is more difficult
in much younger—that is, pre-school age and below, or much
older patients, due to overlapping symptoms of other diseases
which may be similar to those of asthma [ 113 ]. A standardized
diagnosis test is lacking [ 11 ], and as a result, misdiagnosis is
frequent [ 11 ]. There is therefore a need to improve asthma
diagnosis methods, particularly among children [ 16 ]. 

Although some work has been done on breath analysis using
fractional nitric oxide (FENO), this method primarily reflects
eosinophilic airway inflammation [ 16, 107, 119–121 ], which is
associated with allergic asthma [ 1 ]. Therefore, the FENO test is
limited in its diagnostic utility [ 121, 122 ]. Furthermore, different
measuring instruments may yield varying FENO concentration
Helvetica Chimica Acta, 2025
readings [ 123 ], and external factors such as smoking can interfere
with signals [ 124 ]. 

Although physical airflow tests are available, there is a specific
need for reliable diagnosis in children, where these tests may
not be so accurate [ 107 ]. Noninvasive breath analysis, which
identifies VOC profiles, is therefore a promising avenue for
accurate asthma diagnoses. Specific VOC profiles in the data may
facilitate a deeper molecular understanding of pathophysiology 
and, consequently, the diagnosis of different asthma phenotypes 
[ 1 ]. VOC analyses would also enable early detection and have a
greater predictive capability for severe attacks and uncontrollable 
asthma symptoms, compared to conventional FENO tests [ 125,
126 ]. In addition, analyzing multiple VOCs for disease presence
may help identify external interferences such as signals from
smoking, and specific profiles may in the future give rise to the
understanding of what is driving the disease. There is currently no
specific biomarker or VOC profile that can differentiate between
asthmatic phenotypes, as of 2024 [ 107 ], although e-noses have
been reported to show potential in asthma phenotype diagnosis
[ 118 ]. There is therefore a substantial gap in the current state of
breath analysis research regarding the crucial early detection of
asthma, especially among children. 

5.1 GC-MS 

A study known as the “The all age asthma cohort (ALLIANCE),”
established by the German Center for Lung Research, is a
long-lasting observational cohort study across seven recruiting 
sites, with an exceptional number of study participants [ 100 ]. In
addition, high follow-up rates were reported for adults (90.5%)
and children (83.9%) at the 12-month follow-up [ 100 ]. Using the
ALLIANCE cohort, a study was conducted by Shahrokny et al.
[ 107 ] to investigate VOCs in the breath samples of 142 children:
36 controls, 55 preschool wheezers, and 51 asthmatic patients.
The study aimed to identify a VOC biomarker or biomarker
profile that could potentially differentiate between patients of 
different phenotypes and concurrently ascertain environmental 
risk factors that influence the disease mechanics of asthma. 

Offline samples were taken and analyzed using GC-MS within 8
days, and a target of 158 VOCs was evaluated using the Mann–
hitney U-test (MWU) and the Pearson correlation. While 

no disease-specific VOC profile was identified to distinguish
asthma or wheeze from controls, the authors observed elevated
exogenous pollutants, particularly naphthalene, in the wheeze- 
asthma groups. No correlation was noted between these environ-
mental pollutants versus TH2 inflammation or lung function. The
results of this study are in line with previous work [ 127 ], which
also observed higher naphthalene concentrations in preschool 
children. Other studies have shown the correlation between 
asthmatic patients and an increase in PAH metabolites found
in other biofluids. For example, some urinary PAH metabolites
were found to be linked with the presence of asthma in children
between the ages of 6 and 19 years [ 128 ]. Furthermore, naph-
thalene concentrations within the serum of 195 Saudi children
demonstrated strong associations with asthma in the study by Al-
Daghri et al. [ 129 ]. Another study by Lin et al. [ 130 ] reported an
increase in the level of 2-naphthol, a metabolite of naphthalene,
in the urine samples of children with asthma. 
11 of 28
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In the work of Shahrokny et al. [ 107 ], numerous air pollutants
were shown to be more concentrated in breath samples of
asthmatic subjects. However, naphthalene was shown to be the
most prominent. Air pollutants such as PAHs are, however, well
known to induce other respiratory diseases in addition to asthma
and wheezing, and therefore using exogenous VOCs as markers
of asthma or wheezing in patients is questionable. Additionally,
the study notes that little is known about the pathophysiology
of asthma and naphthalene. Although no strong associations
emerged between inflammatory asthma phenotypes and specific
VOC markers, the study supports breath analysis as a noninva-
sive approach to probe how air pollutant exposure contributes to
the onset of respiratory disease. 

Limitations included a restricted targeted panel of 158 VOCs,
which may have missed discriminatory biomarkers; co-elution
risk, increasing the chance of misidentification; and medica-
tion confounding, as 73% of asthmatic participants were on
anti-inflammatories, potentially masking inflammation-related
VOCs. In addition, the modest sample size ( n = 142) and multicen-
ter heterogeneity across seven recruiting sites reduce statistical
power and complicate between-group comparisons. 

Another publication, which involved a co-author from a Swiss
institution, was that of Holz et al. [ 42 ], who used ALLIANCE
adult data to question the robustness of breath-VOC diagnos-
tics for asthma, despite previous positive reports—the article
references Vries et al. [ 131 ] and Schleich et al. [ 132 ]. 

Breath VOCs were compared between the different phenotype
subjects, based on FENO tests and cell counts in sputum and
blood biofluids, from 133 adult participants. An offline GC-MS
method was used to evaluate the state of 134 VOCs. Of these,
40 VOCs were below the LOD in 85% of participants and were
therefore excluded from the study. A particular strength of this
study is the use of active carbon filters for participants to inhale
through. Carbon filters are widely accepted to efficiently remove
organic matter and purify an air sample of VOCs [ 133–136 ],
and have been used as inhaled purification systems to improve
breath VOC data in other studies [ 99 ]. This would remove any
background artifacts from the sampling site. A further strength of
this particular methodology was the use of aluminum reservoir
tubes (Tenax TA adsorption tubes), known to be inert, and
therefore would have reduced the potential for positive and
negative artifacts, despite being an offline sampling technique
[ 137, 138 ]. 

The study’s results, however, found no statistically significant
correlations between markers of inflammation: nitric oxide
levels, sputum neutrophils/eosinophils, or blood eosinophils,
versus breath VOCs, as determined by the Benjamini–Hochberg
method. The breath matrix, however, is known to be a vast array
of thousands of VOCs and a lack of correlation may be due to the
limited number of VOCs tested using GC-MS. This is a similar
limitation as observed in the study of Shahrokny et al. [ 107 ]. 

The study by Holz et al. [ 42 ] emphasizes that no positive
results of an asthma breath VOC trial were obtained in this
work, nor is there yet as of 2019, an established breath VOC
profile for any disease. They also suggest that substantial work
needs to be invested into breath analysis research of asthma to
12 of 28
obtain clinically valuable VOC biomarker patterns for asthma 
phenotypes. Additionally, they emphasize the need for standard-
ized methodological approaches and a comparison of methods
between research groups. Considering the major challenge of 
interfering factors, that is, background external VOCs, the study
also infers the need for a greater understanding of the biochemical
processes behind the production of VOC profiles for a specific
disease. 

Khamas et al. [ 125 ], during the SysPharmPediA (Systems Phar-
macology Approach to Uncontrolled Pediatric Asthma) study, 
evaluated GC-MS to differentiate VOC profiles between uncon- 
trolled and controlled asthmatic children. Out of 196 subjects, it
was found that acetophenone, styrene, and ethylbenzene were 
promising species that were significantly different between the 
controlled and uncontrolled asthma cohorts. Limitations mirror 
prior GC–MS works, including targeted scope and a modest
sample size, but the study’s strength lies in its classification and
prediction performance. 

5.2 Soft Ionization Mass Spectrometry 

A recent promising study by Houssni et al. [ 11 ] is the first pub-
lication in which the Vocus PTR-TOF-MS instrument was used
to identify VOC profile differences between 41 allergic asthmatic
children and 40 healthy control children (ages 11.8 ± 2.7 years)
during the EXhalomics in PEDIatric Asthma (EXPEDIA) study. 
The participating subjects were recruited from the respiratory
outpatient clinic of the University Children’s Hospital in Zurich.
PTR-MS predominantly uses H3 O+ as the reagent ion for VOC
ionization, although in this work both H3 O+ and NH4 

+ were used.
Complementary to the presented PTR-MS methods, molecular 
identification was carried out using GC × GC-Q-TOF. Statistical 
analysis was performed using the Wilcoxon rank sum test and the
Benjamini-Hochberg procedure. 

The authors reported four confirmed exhaled VOCs, which they
attributed to asthma incidence, as well as 16 novel markers;
predictor candidates: three exogenous, seven likely endogenous, 
and four unknowns, with high confidence in their identification
(Figure 5 ). Other interesting findings of this study included
the elevation of siloxane species, such as hexamethyldisilox- 
ane, found in the breath samples of asthmatic children. The
study argues that siloxanes are not naturally occurring in the
environment and that these species are not present in asthma
inhalers. The levels among the asthma patients were higher
compared to the healthy controls, which this study further
argues rules out the possibility of contamination from the sam-
pling system. To explain this, Houssni et al. [ 11 ] hypothesize
that the reason for this is a difference in the uptake and
release of these species between asthmatic subjects and healthy
controls. 

A particular strength of this study is the biologically relevant
interpretation of the presence of identified compounds. The 
authors indicate that the identified aldehydes, methyl esters,
and fatty acids are known markers for lipid peroxidation and
enzymatic reduction. They explain how reactive oxidative stress,
often associated with inflammation, damages a cells’ lipid mem-
branes, although this is not specific to asthma. They also mention
Helvetica Chimica Acta, 2025
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FIGURE 5 Box and Whisker plots showing the statistical differences between asthmatic and healthy controls regarding breath concentrations of 
specific VOCs. Reproduced from Houssni et al. [ 11 ] with permission from BMJ Publishing Group Ltd. 
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that butyrate is converted into methyl butyrate in people with
allergic asthma during the regulation of immune cell behavior. A
further strength of this study was the comparability between the
asthmatic patients and healthy controls within the sample group,
which had a relatively narrow age range (11.8 ± 2.7 years), evenly
distributed genders, and no significant differences in body mass
index. Regarding instrumentation, using two reagent ions allows
for the potential to differentiate isomers of species, dependent
Helvetica Chimica Acta, 2025
on ion-molecule reactions. However, more research is needed to
understand the kinetics of the VOCs of interest in this context. 

Limitations included the absence of objective lung-function 
testing, that is, spirometry, with respiratory health data drawn
primarily from questionnaires. Furthermore, it is known that 
VOCs will only react with H3 O+ if the exothermicity of the
reaction exceeds 40 kJ/mol [ 139–141 ], potentially causing the loss
13 of 28
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of some information. Only two reagent ions were used, both
with predominant ion-molecule reactions being proton transfer,
which limits the ability to separately analyze isomers. It was also
reported in the manuscript that no certified reference standard
was used for the GC × GC-Q-TOF analyses. The authors also
compared their work to other studies [ 16, 142, 143 ], although
not much overlap was seen in the detected biomarkers, which
raised questions about the reproducibility between VOC analysis
methods in breath analysis for asthma distinction. 

SESI-HR-MS has also been used in pediatric allergic asthma
studies, with the first published work being that of Weber et al.
[ 16 ]. The authors aimed to identify VOC signature differences
in patients with allergic asthma as well as healthy controls
over a cross-sectional observational study. Asthmatic subjects
were recruited from the University Children’s Hospital Zurich
outpatient clinic and ranged in age from 5 to 18 years: 56
healthy controls and 48 patients. As opposed to targeted anal-
ysis, m/z features were analyzed for their differences using the
Bayes-moderated t -statistical test. Weber et al. [ 16 ] found 375
significant features, of which 134 were putatively identified. A
particular highlight from this study was the finding that the
lysine metabolism, for example, was the most elevated pathway
in the asthmatic group, for which the associated evidential
compounds were identified using MS2 . They identified two
pathways for lysine degradation: one within the gut microbiota
and another originating from a human degradation pathway.
Tyrosine metabolism was also observed to be upregulated within
the asthmatic cohort. This study identified several metabolite
species using SESI-HR-MS, which are known to be associated
with pathways linked to the pathophysiological course of asthma.
The limitation of this study, however, was its sole focus on allergic
asthma and therefore dismissing other phenotypes of asthma, as
well as the higher proportion of males in the asthmatic group. For
both the healthy controls and the asthmatic group, however, the
body mass index and ages were similar. 

Another study that utilized SESI-HR-MS was that of Zeng et al.
[ 108 ]. As opposed to studying the VOC profile differences to
differentiate between diseased groups and healthy controls, this
study focused on the pharmacometabolomics of salbutamol for
bronchodilation. The aim of this work was to better understand
the responsiveness of children to salbutamol, a sample cohort
where the responsiveness is known to be very heterogeneous
[ 144 ]. Pharmacometabolomics is a very powerful tool that links
therapeutics and metabolomics for the understanding of the bio-
chemical mechanisms underlying a patient’s response to a drug
[ 145–147 ]. In this work, 34 pediatric asthmatics were recruited
between the ages of 6 and 18 years, from the pulmonology
department of the University Children’s Hospital Basel (UKBB).
The study specifically identified enhancements in the arginine
biosynthesis and sphingolipid metabolic pathways. This was
based on significant increases in the signal intensities of m/z
features which mediate bronchodilation as a result of salbutamol
inhalation, with substantial metabolic changes occurring after
1 h. A highlight of this study is the demonstration of rapid
metabolic profiling for the purposes of understanding pharma-
cometabolic processes in real-time as a response to salbutamol
inhalation. It opens up a promising sub-field of breath analysis
in pharmacometabolomics for the continuous and routine mon-
itoring of drug efficacy in asthmatic patients. The biochemical
14 of 28
explanations provided in this study are also noteworthy. The
limitations, however, surround the very small sample size of 34
subjects, and that compound identification was based purely on
unambiguous molecular formula assignment. Furthermore, it 
is difficult for the authors to differentiate whether the changes
in metabolic features are caused by increased metabolism or
whether another part of the respiratory system is activated, yet
unknowingly. 

5.3 E-noses 

E-noses, composed of sensor arrays to detect multiple species, are
a novel and increasingly used system in breath analysis. They
have been used in the work of Abdel-Aziz et al. [ 118 ] to investigate
the physiological changes in asthmatic patients when presented 
with a rhinovirus challenge—a common cold virus and a trigger
for asthma attacks. The breath samples of both asthmatic patients
(12 subjects) and healthy controls (12 subjects) were measured
using an e-nose (SpiroNose) to obtain signals from several VOC
mixtures, both before and after the challenge, at multiple time
points. Data analysis was conducted using statistical pattern 
recognition tools such as LASSO modeling. Abdel-Aziz et al. [ 118 ]
state that the breath print results from their study allow them
to distinguish between the healthy and diseased populations. 
However, there is no mention in the work regarding specific VOCs
or VOC mixtures, nor are there any biochemical explanations. 

E-noses have also been used in the work of Abdel-Aziz et al. [ 148 ]
to investigate subphenotyping and whether atopic and nonatopic 
asthma could be distinguished. A total of 655 subjects were
recruited, which included 503 asthmatic adults, 54 preschool chil-
dren, and 98 school children, for which exhaled breath samples
were measured using either the SpiroNose or an integrated e-
nose platform. Three separate machine learning algorithms were 
used for the supervised data analysis. An unsupervised Bayesian
network was also used. The machine learning models were
able to discriminate between the VOC signatures of atopic and
nonatopic asthmatic groups and the study showed that different
e-noses were able to distinguish between atopic and nonatopic
asthma, showing the potential for the use of e-noses in asthma
phenotyping. The main strengths of this study were the much
larger sample size compared to the previous studies reviewed,
enhancing the statistical significance and accuracy of the research
findings. Furthermore, different e-nose types were used in the
study, incorporating both online and offline measurements. 
There was also reproducibility recorded across the devices and
cohorts. The limitations of the study were however that e-noses do
not identify specific VOCs, and therefore, no information on the
bio-metabolomics can be inferred. As a result, understanding the
biomechanics behind different asthmatic phenotypes and how 

they occur cannot be evaluated using e-noses. Furthermore, in
contract to the work of Abdel-Aziz et al. [ 118 ], only one time
point was recorded in this work, which does not take into account
the possible diurnal variability of breath, resulting in a lack of
longitudinal tracking. The study also notes that the majority of
subjects were white, reducing generalizability. 

Similar to the other e-nose studies, Brinkman et al. [ 104 ] aimed
to identify phenotypes of asthma based on VOC signatures
given by e-noses, although they went further and evaluated
Helvetica Chimica Acta, 2025
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the stability of e-nose derived phenotyping on the incidence
of inflammatory and clinical changes of a patient. This is a
multicenter longitudinal study across seven participating sites
that took breath samples from adult patients with severe asthma:
78 subjects with a median age of 55 years, all above 18 years,
and of which 41 % were male from the U-IBIOPRED cohort.
Breath samples were analyzed using an array of sensors, for which
the data subsequently underwent Ward clustering as well as K-
means clustering, using internal validation through partitioning
around medoids combined with topological data analysis. The
longitudinal within-patient stability was subsequently assessed
by resampling patients’ breath at 12–18 months. Subjects were
asked to inhale through a VOC filter and exhale into Tedlar
bags. The sample was then drawn through Tenax adsorption
tubes from the Tedlar bag, with N2 as the carrier gas. Offline
analysis was then carried out using an array of four e-noses from
different developers, exploiting different sensor technologies. The
authors discovered three unbiased and unique clusters identified
by the e-noses, which revealed three distinct severe asthma
inflammatory phenotypes. These results demonstrate the poten-
tial of using e-noses for phenotyping patients with severe asthma
phenotypes in the clinical setting, which is essential for asthma
monitoring, personalized management, and for patients who
are more challenging to treat. Strengths of this study included
using a platform of e-noses assembled using four different
brands of sensors and using different techniques for detection.
Furthermore, the recruitment of patients from seven different
centers allows for greater generalizability of the patient cohort.
Limitations included the lack of any external validation with an
independent cohort. As with the aforementioned studies, e-noses
lack the capability to identify specific VOCs, inhibiting progress
in understanding the biochemical processes behind the different
phenotypes. Finally, 78 subjects were involved in the study, which
is modest, although patients were told not to smoke, eat, or
drink from only 2 h before sampling, increasing the likelihood of
exogenous VOCs affecting results. 

Lammers et al. [ 149 ] also used e-noses to investigate breath
profiles of subjects who had been presented with a rhinovirus
challenge, similar to the work of Abdel-Aziz et al. [ 118 ]. Lammers
et al. [ 149 ] monitored the day-to-day fluctuations in breath
profiles in both asthmatic and non-asthmatic patients, before
and after the rhinovirus-16 challenge was presented to subjects.
Breath analysis was conducted on 12 atopic asthmatic patients
and 12 atopic healthy controls, using e-noses, consisting of seven
different sensors. Breath samples were taken three times a week,
60 days before the rhinovirus-16 challenge, and 30 days afterward.
The authors found that greater fluctuations in the e-nose readings
occurred after the subjects were presented with the rhinovirus
challenge. Substantial differences in data were observed between
the asthmatic and healthy control groups, suggesting the poten-
tial use of e-noses to one day monitor unstable asthmatic episodes
caused by a virus. A particular strength highlighted by the work
was the long follow-up period of 3 months, for subjects. 

5.4 Summary on Asthma Diagnosis 

Cohorts such as ALLIANCE provide valuable infrastructure for
asthma breath studies, but small sample sizes, limited phenotype
breadth, and restricted generalizability remain common. This
Helvetica Chimica Acta, 2025
is often due to ethical and logistical constraints that preclude
inclusion of severe cases, for example, rhinovirus-triggered. 
Recent work has mainly relied on GC-MS and e-noses. GC-
MS typically requires standards, is susceptible to co-elution, and
covers only a finite analyte panel which can be insufficient for
robust case–control discrimination. E-noses, while low-cost and 
applicable for pattern recognition, do not identify VOC struc-
tures therefore limiting biochemical interpretation across asthma 
phenotypes. Overall, concerns persist about the paucity of high-
quality data and the lack of standardized methods in asthma
breath analysis [ 42 ]. 

6 Lung Diseases Other Than Asthma 

6.1 Chronic Obstructive Pulmonary Disease 
(COPD) 

Chronic obstructive pulmonary disease (COPD) is a progressive
lung disease causing persistent and progressive bronchial airflow 

obstruction and limitation [ 36, 150–155 ], which may be classified
as either emphysema [ 150 ] or chronic bronchitis [ 154 ] or a com-
bination of both [ 155 ]. It may be further classified by the multiple
phenotypes and endotypes it features [ 156 ]. It is a pathological
inflammatory condition that declines lung function [ 153 ] and
exhibits symptoms, including a chronic cough, excessive mucus 
production [ 151, 154 ], wheezing, expectoration, and exertional
dyspnea, resulting in a reduced quality of life [ 25, 150, 153–
157 ]. The inflammation associated with COPD causes airway
narrowing and lung parenchyma damage, reducing the lungs’ 
ability for elastic recoil [ 150 ]. As a result, the airways struggle to
remain open on exhalation [ 150, 158 ]. Further developments from
COPD may include cognitive decline, lung cancer, skeletal muscle 
wasting, and cardiovascular disease [ 159 ]. The burden of COPD
on health care expenditure has also been noted [ 160 ]. 

COPD is incurable and remains a major global cause of morbidity
and mortality [ 31, 36, 156, 159 , 160 ]. Cigarette smoking is one
of the leading factors [ 36, 154–156, 159, 160 ], with additional
contributions from air pollution, combustion flames, dust, and 
occupational chemicals [ 158 ]. Biological and developmental fac-
tors, including childhood growth disorders, asthma, frequent 
childhood infections, premature birth, and other previous lung 
infections [ 36, 156 ], also increase susceptibility. Diagnosis relies
on spirometry and lung function testing, together with symp-
tom assessment and medical history [ 9, 31 ]. These approaches,
however, offer limited insight into underlying biochemical and 
metabolomic processes, and physiological testing can be chal- 
lenging for young children and the elderly [ 31 ]. By contrast, non-
invasive breath analysis may reduce patient burden and provide
molecular information. Prior studies report distinct VOC signa- 
tures differentiating COPD patients with frequent exacerbations 
from infrequent exacerbators [ 25 ], and COPD from healthy
controls. 

Two breath analysis studies on COPD, conducted by researchers
affiliated with Swiss institutions, are notable research highlights
since 2019. Basler et al. [ 157 ] discovered particular VOC breath
signatures associated with the acute exacerbation phases of 
COPD (AECOPD). By sampling breath using SESI-HR-MS from 

patients during stable COPD and AECOPD phases, they found
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alterations in the VOC signatures representative of an activation
in the tryptophan, tyrosine, and linoleate metabolic pathways,
all of which are linked to inflammation. However, the decreased
levels of several metabolites within the impaired tyrosine pathway
in particular, during AECOPD episodes, could serve as a potential
VOC signature for this condition. Based on these VOC signatures,
the authors reported the ability to accurately predict AECOPD
with a sensitivity of 82.5%, compared to the stable COPD state,
and this result gives hope of accurate AECOPD clinical diagnosis
using breath analysis in the future. This study was conducted
at the University Hospital in Zurich between January 2020
and September 2022, in which 35 participants were successfully
enrolled and completed the sampling. Similarly, Gaugg et al.
[ 25 ] also investigated the VOC profile of patients undergoing
exacerbations in COPD using SESI-HR-MS. This study sampled
26 frequent exacerbators and 26 non-frequent exacerbators and
found a significant increase in the levels of nitro-aromatic
compounds in the VOC signatures of patients undergoing COPD
exacerbations. Conversely, the authors discovered a decrease in
ω-oxo, ω-hydroxy, and dicarboxylic acids, inferring a reduced
activity from the metabolic ω-oxidation pathway, during COPD
exacerbations. Both studies shed light on the biochemical pro-
cesses surrounding COPD exacerbations, although further work
is needed. 

Furthermore, the work of Basler et al. [ 157 ] had no healthy
control group to compare results against. Another similar lim-
itation surrounds causality. Basler et al. [ 157 ] conducted an
observational study and therefore no information regarding
the causal relationship between AECOPD and metabolic VOC
signatures could be inferred. Gaugg et al. [ 25 ] also had no
previous information regarding the initiation of exacerbations,
and therefore, this also limited the biochemical understanding of
how VOC signatures related to COPD exacerbations. The main
future needs in COPD analysis, therefore, encompass much larger
cohort studies, the involvement of healthy control groups, COPD
groups, and AECOPD groups, as well as the need to further
understand the biological mechanisms occurring which define
the VOC signatures between these cohorts. The use of SESI-HR-
MS methods which have much higher resolution power will be
imperative to bring insight into AECOPD pathophysiology. 

6.2 Lung Cancer 

Among all cancers, carcinogenesis of the lungs is the leading
cause of cancer deaths worldwide [ 13, 28, 161–167 ]. Progressive
morphological alterations develop over several years in the lungs’
epithelial cells [ 168, 169 ] into a malignant neoplasm, which then
may grow rapidly and uncontrollably [ 4, 167 ] as cancer cells
multiply and cluster to produce tumors [ 170, 171 ]. Lung cancer
develops after many years of exposure to oxidizing species of
both endogenous and exogenous origin [ 4 ], of which cigarette
smoke [ 167, 172 ] is the leading cause of lung cancer incidence
[ 164, 167, 168 ]. Other causes include air pollution [ 4, 167 ],
second-hand smoke exposure [ 170 ], asbestos [ 165, 168 ], radon gas
[ 165, 168 ], ionizing radiation [ 167 ], chronic infections [ 165 ], diet
[ 173 ], mitochondrial products [ 4 ], the further development of
other chronic pulmonary conditions [ 167 ], resulting in epigenetic
and genetic processes [ 172 ] causing mutations in the lungs or
abnormal cell growth [ 170 ]. Family history and genetics also play
a role in the likelihood of developing the disease [ 168, 170, 172 ]. 
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Epidemiological studies have shown a gender disparity, with 
a higher mortality rate demonstrated in males compared to
females, from lung cancer [ 167 ]. The high mortality rate of cancer
stems from a lack of early diagnosis, mainly due to symptoms of
lung cancer only arising at later stages of the disease [ 28, 173 ]. This
is when treatment options are limited [ 166 ], and cancer is much
more difficult to treat successfully [ 13, 170, 171 ]. Early detection
using noninvasive techniques are therefore highly desired [ 13 ]. 

A recent study by Herth et al. [ 13 ] investigated the breath profiles
of lung cancer patients before and after surgery. The authors
involved 29 participants between March 2020 and January 2023,
at the University Hospital of Zurich. Online breath samples
were analyzed from participants using SESI-HR-MS. Among 
3482 features found in the spectra, 515 m/z features differed
between before and after surgery. Out of these 515 features,
154 features were likely actual differences, due to the small
sampling size and a false positive rate of 0.71. Despite this,
indole and 3-oxotetradecanoic acid were prospectively identified 
from the spectral features which may in the future help in
the understanding of the biochemical and metabolic processes
surrounding the development of lung cancer. The study further
employed PCA, which revealed a primary cluster of subjects with
recurrent disease incidence that was initially undetected. 

In contrast, Kort et al. [ 28 ] used e-nose sensors in their study. In
this work, the authors aimed to train and validate a prediction
model based on sensor data to accurately distinguish patients
with non-small cell lung cancer from healthy controls. This
was based on features seen from exhaled breath, and to further
assess the usefulness of other clinical variables in the diagnosis
of lung cancer. The training cohort consisted of 376 subjects,
with 199 forming the validation cohort. Based on the validation
phase of the study, the authors were able to distinguish lung
cancer patients from healthy controls, with a sensitivity and
specificity of 95% and 49%, respectively. It was concluded that
combining clinical variables into the predictive model increased 
the diagnostic ability in identifying lung cancer. 

Each study has a specific strength. The work of Herth et al.
[ 13 ] utilized SESI-HR-MS, which is known to have a resolving
power of around 140,000, and is able to produce spectra with
m/z VOC features in extreme detail. This is to the point at
which specific VOCs may be proposed, allowing for the potential
understanding of the metabolic and underlying physiological 
processes, resulting in disease incidence. The work of Kort et al.
[ 28 ], on the other hand, used a much greater sample size of
576 participants for both the baseline and validation phases.
The participants were also taken from multiple hospitals which
further enhances the generalizability of the findings. 

There were, however, also limitations to each study. Herth
et al. [ 13 ] reported a very high false positive rate of 0.71, which
was due to only acquiring 29 participants. This substantially
reduced the number of usable features for potential diagnostic
predictability and as a result, despite using SESI-HR-MS, reduced
the VOC identification potential and therefore the physiological 
understanding of the causation of disease. Furthermore, this
inhibited the possibility of identifying specific cancer phenotypes 
and histologies. By using only sensors in the work of Kort
et al. [ 28 ], there is no possibility of identifying the structures
Helvetica Chimica Acta, 2025

om
m

ons L
icense



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15222675, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hlca.202500193 by C

ochrane L
ithuania, W

iley O
nline L

ibrary on [20/01/2026]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
of VOC metabolites associated with lung cancer incidence, and
therefore, no further understanding of the metabolic processes
governing lung cancer incidence may be inferred from this study.
Furthermore, the work reports that from some participating
hospitals, insufficient data analysis was caused by a limited
number of positive or negative diagnoses in lung cancer, resulting
in a reduction in the accuracy of the study. 

6.3 Cystic Fibrosis 

Cystic fibrosis is a currently incurable, progressive, autosomal
recessive, and inherited lung disease [ 174 ] that is caused by
alterations in the cystic fibrosis transmembrane conductance reg-
ulator gene (CFTR) [ 15, 175–177 ], specifically involving mutated
alleles associated with chromosome 7 [ 15, 178 ]. This mutation
causes a defective function in the production of CTFR proteins
which are responsible for carrying chloride ions across lung
epithelial cell membranes [ 175, 178, 179 ]. As a result, electrolyte
regulation surrounding the mucosal epithelium is irregular
causing excessive mucus build-up in which pathogens may
harbor, causing infections. This usually occurs deeper down
the respiratory tract [ 178 ], resulting in a cycle of infection and
inflammation and as a consequence, a decline in lung function
[ 15, 26, 37, 174 , 175, 177–183 ], bronchiectasis development, and
inevitably respiratory failure [ 181, 184 ]. Cystic fibrosis also affects
the sinuses, reproductive tract, gastrointestinal tract, intestines,
liver, pancreas, and sweat glands [ 15, 178, 180, 181 , 183 ]. The
disease affects approximately 1 in every 2000–3000 births, with
the highest prevalence among subjects of Caucasian descent [ 181 ].
Current diagnostic methods are slow [ 21 ], and early detection
of airway infections is crucial to increase the survival rates of
cystic fibrosis patients by starting antimicrobial treatments early
[ 37 ]. A noninvasive breath analysis method would therefore be
invaluable for cystic fibrosis patients [ 37 ]. 

Staphylococcus aureus is a particular pathogen that may grow
in the mucus of cystic fibrosis patients and lead to infection.
Seidl et al. [ 15 ] conducted a longitudinal study using an e-nose
to observe whether breath profiles of cystic fibrosis patients
would change for different infection statuses of the disease. The
authors found differences in the responses from the e-noses and
therefore the VOC composition, for children who were S. aureus
positive, compared to negative. This study acquired 72 pediatric
subjects. In contrast, the work of Weber et al. [ 26 ] used SESI-HR-
MS to annotate as many differing m/z features between healthy
controls (49) and patients with cystic fibrosis (52), using literature
comparisons and on-line MS2 spectra. The authors were able to
putatively identify 45 discriminatory exhaled VOCs, for which
xanthine, glyceric acid, and glycolic acid were elevated in subjects
with cystic fibrosis, compared to the healthy control group. In
addition, the study reports a decrease in a group of aldehydes
and acylcarnitines in cystic fibrosis patients, compared to the
healthy controls. This work is a development from the author’s
previous study, Weber et al. [ 37 ]. In the study by Weber et al.
[ 37 ], the authors found 171 m/z features that were significantly
different in pediatric subjects with cystic fibrosis, compared to the
healthy controls. As pathogenic bacterial infection is known to
exacerbate cystic fibrosis through the infection and inflammation
cycle which causes the decline in lung function, Kaeslin et al.
[ 21 ] investigated whether different breath VOC patterns could be
Helvetica Chimica Acta, 2025
identified in patients hosting different bacterial infections, using 
SESI-HR-MS and principal component analysis. The authors 
were able to distinguish between six pathogens based on VOC
profiles and putatively assigned VOC identifications, using 180 
headspace samples. 

Strengths in data quality assurance were explicitly addressed
across these studies. In the study by Seidl et al. [ 15 ], a longitudinal
design was implemented, and monthly quality-control gases were 
used to verify instrument performance and to check for sensor
drift. In the study by Weber et al. [ 26 ], building on Weber
et al. [ 37 ], MS2 spectra together with literature matching were
used for putative VOC identification. A similar approach was
applied by Kaeslin et al. [ 21 ], who used SESI-MS/MS to further
characterize VOCs. Such SESI-HR-MS-based assignments, even 
when putative, have the potential to advance breath analysis
by linking observed signals to biochemical processes relevant to
cystic fibrosis and to pathogen-specific signatures, an analytical 
depth that e-noses (as in Seidl et al. [ 15 ]) cannot provide. A notable
limitation, however, is that in the three recent Swiss CF studies,
most VOC identifications remain putative rather than confirmed. 

There is, nevertheless, a clear need to refine our understanding
of CF-associated breath profiles and the contributions of indi-
vidual pathogenic infections that exacerbate disease. Priori- 
ties include improving confidence in VOC identification and 
clarifying the metabolomic pathways underlying changes in 
VOC patterns with CF and co-occurring infection. Distinguish-
ing inflammatory from non-inflammatory VOC responses in CF 
is also important [ 15 ], as is assessing the influence of inhaled
medications on measured breath signatures [ 26 ]. Although more
work-intensive, orthogonal off-line methods such as GC ×GC- 
OF-MS and LC-MS/MS will be valuable to verify and refine the
putative assignments reported to date [ 21 ]. Finally, as in many
breath studies, larger cohorts and standardization across sites
and protocols [ 37 ] are essential for robust cross-comparison and
to support the translation of SESI-HR-MS into routine clinical
practice. 

6.4 Obstructive Sleep Apnea (OSA) 

A common breathing condition experienced during sleep, which 
is particularly prevalent at an advanced age, is obstructive sleep
apnea (OSA) [ 17, 27, 185, 186 ]. OSA is caused by the narrowing
and collapsing of the soft palate [ 27, 186 ], causing complete or
temporary obstruction of breathing during sleep [ 187, 188 ], which
therefore limits oxygen intake [ 189 ]. This results in recurrent
apnea and hypopnea events [ 17, 187, 189 ]. The reduced quality of
sleep [ 17 ] and oxygen intake leading to blood oxygen desaturation
and in turn, increased blood CO2 levels, during sleep significantly
increase the development of further diseases [ 186 ] as well as
daytime sleepiness [ 187 ] and headaches [ 188 ]. 

OSA is often underdiagnosed [ 17 ], and current methods to detect
it are costly, time-consuming, and inconvenient for the patient,
as they involve polysomnography in the hospital sleep lab [ 17,
186, 188, 189 ]. Furthermore, night-to-night variability is often a
diagnostic challenge for OSA, requiring several nights for an
accurate diagnosis of OSA [ 17 ]. Screening questionnaires may also
be used, but these are not very accurate [ 188 ]. There is therefore a
17 of 28
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lack of a reliable and fast diagnosis method for OSA [ 27 ], which a
breath analysis method could one day suffice. 

Work has already started on finding VOC patterns in OSA.
Using SESI-HR-MS, Nowak et al. [ 17 ] confirmed clear differences
in the VOC profiles of 149 subjects with and without OSA
and found that biomarker levels were connected with diseases
severity. The study also presented a list of 33 VOC biomark-
ers for OSA diagnostics, which the authors concluded to be
robust enough despite inter-individual variability. In particular,
numerous furanes, unsaturated aldehydes, and benzothiazole
were identified. Furthermore, 32 of these species were found
to correlate with the oxygen desaturation index, a well-known
marker for OSA. Further work, however, is needed to understand
the metabolomics behind this correlation. Following on from
this work, Streckenbach et al. [ 27 ] were able to confirm 42
previously reported biomarkers associated with OSA, of which
nine VOCs, including 4-(hexyloxy) phenol and 2-butylfuran, were
significantly increased in subjects who did not receive OSA
treatment, compared to patients who did. The findings were in
agreement with previous work of Nowak et al. [ 17 ] and Schwarz
et al. [ 190 ], despite changes in instrumental set-up and diversified
cohorts, demonstrating promise for the eventual OSA diagnosis
using VOC biomarkers. 

Some future needs in research surrounding OSA are highlighted
in both the work of Nowak et al. [ 17 ] and Streckenbach et al.
[ 27 ]: the need for larger patient cohorts [ 17, 27 ], a significant
need for further validation studies [ 17 ], as well as a standardized
methodology for using SESI-HR-MS in the clinical field [ 17 ]. The
quantification of such VOCs [ 27 ] will also be essential to define
thresholds for the presence of disease, and enable continuous
health monitoring of patients [ 27 ]. The addition of patient history
as well as qualitative data such as screening questionnaires [ 17 ]
could also enhance the accuracy of future studies. Accurate
compound identification [ 27 ] and collaboration with clinicians
and biomedical scientists would also help to better understand
the association of metabolites with in vivo biochemical processes.

6.5 Further Studies Involving Exhaled Breath 

Since 2019, authors from Swiss institutions have also been
involved in other breath analysis studies, not necessarily associ-
ated with disease but also focused on method development. The
work of Decrue et al. [ 191 ], for example, evaluated the feasibility of
using offline sampling using nalophan bags to be able to analyze
the breath of infants, who are unable to breathe into a mass
spectrometer. Offline sampling, which could also be beneficial
for immobile, elderly, very weak individuals, or intensive care
patients, is less ideal than online due to artifacts. This particular
study investigated the accuracy of metabolites analyses in the
breath of infants. The authors first tested an adult population
of 13 subjects who provided 176 pairs of offline samples (into
nalophan bags) and online real-time measurements, for detecting
the presence of artifacts in the sampling bags. In parallel, nitric
oxide which is an inflammation marker, and lung function
which is an indicator of breathing patterns, were also measured.
The authors found that the m/z features from the SESI-HR-
MS using offline nanolophan bag sampling caused a reduction
in signals, indicating the loss and adsorption of metabolites
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to the walls of the nanolophan bag, with a dependence on
the functional groups within the metabolites. Some artifacts
were found to be introduced from the material of the sampling
bags and were ignored in the data analysis. Only m/z features
with a Lin’s CCC > 0.6 threshold were considered for further
analysis. Furthermore, the authors were able to correlate 4-
hydroxynonenal, a biomarker for oxidative stress, with nitric 
oxide and lung function. As a result, the authors were able to
successfully apply breath sampling in Nalophan bags to study 16
infants. 

Particle pollution is known to exacerbate lung diseases and is
widely acknowledged to be connected to adverse respiratory
conditions [ 192–196 ], a major cause of premature deaths. Air
pollution caused an estimated 4.2 million deaths globally in 2019
[ 197 ]. Epidemiological studies have associated air pollution expo-
sure with adverse respiratory [ 198 ] and cardiovascular conditions
[ 199, 200 ], which may be induced by oxidative stress from air
pollution exposure [ 201–203 ]. Oxidative stress may be induced by
the exposure of a cell to organic compounds as well as transition
metals present in particulate matter, causing cytotoxicity and 
inflammation [ 204–206 ]. It is currently measured by in vitro
assays, although these types of clinical examinations often are
limited to single time points and labor-intensive. Samples also
cannot be reused [ 204 ]. To improve such tests, noninvasive,
fast, and routine methods such as breath analysis would be
ideal. A VOC analysis experiment was therefore completed by
Cassagnes et al. [ 204 ], which investigated the oxidative stress
induced by air pollution on cultured bronchial epithelial cells,
by observing the released VOCs with PTR-MS. In this work,
the cells were exposed to Cu(II), 1,4-naphthoquinone as single
entities, as well as aerosol filter extracts from wood burning and
secondary organic aerosol (SOA) originating from α-pinene. The 
authors found that dimethylbenzaldehyde, benzaldehyde, and 
acetonitrile were released by the cells upon exposure to biomass
burning pollutants, α-pinene SOA, and 1,4-naphthoquinone, 
respectively. It was also noted that no VOCs were emitted when
the cells were presented with Cu(II) and that the emission of
benzaldehyde was associated with cell death. As a result, the
authors suggest that their study paves the way for determining
biomarkers as an indication of pulmonary damage as a result of
exposure to particle pollution. 

The work of Gaugg et al. [ 207 ] examined the VOC patterns
in the breath of patients with idiopathic pulmonary fibrosis
(IPF). This disease involves the gradual decline in lung function
leading to worsening dyspnea and patients have an average life
expectancy of only 2.5–5 years after diagnosis. The pathway to
IPF development is poorly understood, although many with the
disease have a medical history of smoking. By using SESI-HR-MS,
Gaugg et al. [ 207 ] analyzed the breath of 21 IPF patients and 21
healthy controls, with a particular focus on the levels of proline
and other amino acids, with the aim of validating the previous
results obtained by Kang et al. [ 208 ]. Gaugg et al. [ 207 ] found
an increase in the concentrations of allysine, leucine/isoleucine, 
valine, alanine, 4-hydroxyproline, and proline in the breath 
of patients with IPF (Figure 6 ). The study obtained a cross-
alidated area under the receiver operating characteristic curve 
of 0.86, indicating that the increases in these amino acids in
breath could potentially be used as IPF biomarkers in breath
samples. 
Helvetica Chimica Acta, 2025
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FIGURE 6 Correlation matrix across all subjects for all amino acids that were found to be significantly increased in the exhaled breath of IPF 
patients. Numbers represent the pairwise Pearson correlation coefficients. Intensity distributions are shown on the diagonal. Reproduced from Gaugg 
et al. [ 207 ] with permission from John Wiley & Sons, Inc. 
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A common limitation of all studies reviewed in this section
is the small sample size. Further validation is also required
in the future to enable definitive statements regarding specific
VOC patterns and biomarkers for particular disease incidence.
A comprehensive investigation of other VOCs that produce the
observed m/z spectral features, making up most of the data
collected in many of these types of studies, is also lacking. Decrue
et al. [ 191 ] also highlight the different limitations with online and
offline sampling, including the presence of artifacts from the use
of nalophan bags, and the issue of not being able to distinguish
isomers with SESI-HR-MS. 

7 Diabetes and Other Metabolic Diseases 

Due to the health and socioeconomic impact of diabetes, early
diagnosis is crucial [ 209 ]. In recent years, authors affiliated
with Swiss institutions have investigated the potential use of
breath analysis for diabetes diagnostics. Nicolier et al. [ 18 ], for
example, investigated the breath VOC signatures from type 1
diabetic subjects, with the aim of trying to identify unique
biomarker VOCs associated with hypoglycemic episodes. Ten
subjects with type 1 diabetes were induced with hypoglycemia.
Frequent breath samples were taken between every 10 and 15
min and were analyzed using GC coupled to ion mobility mass
Helvetica Chimica Acta, 2025
spectrometry (GC-IMS). The authors found modest correlations 
between the concentrations of certain VOC species, for example,
acetone and isoprene, and blood glucose levels. Machine learning
models, including support vector machine classifiers as well 
as partial least squares discriminant analysis (PLS-DA), were 
used to map VOC signatures over different glycemic states. The
models demonstrated a PLS-DA accuracy of 93% for categorizing
different glycemic states. The authors conclude that measuring
VOC profiles using GC-IMS may be a viable method in the future
for monitoring and managing diabetes and emphasize that VOC
profiles, as opposed to individual biomarkers, are essential for
accurate analysis and classifying glycemic states. This study also
highlights some limitations. A very small sample size of only 10
subjects was included in this work, limiting the generalizability of
the study. The use of GC-IMS also restricted the number of VOCs
that could be analyzed, compared to a GC-MS system, which has
a comparatively higher sensitivity. Furthermore, systems such 
as GC-IMS are unsuitable for measuring small alkanes, such as
propane, due to their lower proton affinity compared to water,
rendering their analysis challenging. 

A further serious complication of diabetes is diabetic ketoacidosis
(DKA), which is an accumulation of ketonemia, acidosis, and
hyperglycemia. Episodes of DKA occur when insulin levels 
are insufficient and require immediate medical attention. By 
19 of 28
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rehydrating a patient and providing insulin, metabolic processes
are re-balanced, avoiding further risk of other complications
[ 12, 210, 211 ]. The work of Awchi et al. [ 12 ] studied the breath
VOC signatures of subjects to investigate the metabolic changes
occurring throughout rehydration and insulin therapy of patients
suffering from DKA. The study sampled 30 patients, of which 5
suffered a DKA episode. Offline breath samples were taken from
patients and ran on a SESI-HR-MS. This study was longitudinal,
that is, breath samples of DKA patients were taken during therapy
and after recovery. The study detected acetoacetate, pyruvate, and
acetone from SESI-HR-MS measurements, which were identified
in the breath samples of the DKA patients. Furthermore, analysis
of the collected spectra identified 665 m/z features that correlated
with the metabolic progression toward a stable state of the patient.
The authors suggest that their study offers a promising prospect
for real-time monitoring of DKA in an ICU setting and provides
further insight into the metabolic changes that occur during
DKA therapy. The limitations of this work, however, include the
interfering factors such as blood acidity induced by excessive
aspirin use, diarrhea, or sultiame. Although the study was able
to identify some VOC structures, the majority of VOCs were not
identified. To further develop this work, the study highlights
the need to identify additional VOCs from breath samples using
specialized methods and to utilize these identified VOCs to gain a
deeper understanding of the metabolic processes governing DKA.

Continuing the theme of metabolic illness, the release of bioactive
compounds by adipocytes, that is, fat tissue, may be dysregulated
in people suffering from obesity, leading to alterations in the
normal functioning of metabolic and physiological processes.
This leads to conditions such as cardiovascular and kidney
diseases, as well as diabetes [ 14, 212, 213 ]. Furthermore, there
is mounting evidence indicating that obesity induces chronic
low-grade inflammation, which is linked to systemic metabolic
dysfunction [ 213 ]. By understanding the metabolic dysregulation
and the associated VOC signatures within adipose cells, there is
the potential to apply this knowledge to the clinical field for early
clinical diagnosis of metabolic disorders. This is especially true
for type 2 diabetes, which is closely associated with adipose tissue
metabolic dysfunction [ 14 ]. 

In order to investigate the metabolic processes within human fat
cells, Mochalski et al. [ 14 ] used human Simpson-Golabi-Behmel
syndrome (SGBS) adipocytes, the commonly used model cells,
[ 214 ] to investigate the VOC signatures associated with metabolic
processes occurring within fat cells [ 14 ]. To investigate the VOC
signatures, the authors used GC-MS as well as head-space needle
trap extraction for up-concentration. The study found 16 com-
pounds emitted from a cultivation flask which were dependent
on the presence of adipose cells. This included ethyl acetate,
n -heptane, isoprene, 2-pentanone, acetone, 2-pentylfuran, 2-
methyl-5-(methyl-thio)-furan, 2-ethylfuran, dimethyl disulphide,
ethyl methyl sulphide, dimethyl sulphide, carbon disulphide as
VOCs given off by the cells. Four more aldehydes were found to
be metabolized and consumed by the cells: hexanal, pentanal,
butanal, and 2-methyl-propanal. This was mostly attributed to the
oxidation of these species by aldehyde dehydrogenases, to their
corresponding carboxylic acids [ 14, 215, 216 ], with a potentially
small fraction of aldehydes being reduced by alcohol dehydroge-
nases to alcohols [ 14, 217 ]. It is suggested in the work of Mochalski
et al. [ 14 ] that the metabolism of cysteine and methionine,
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may produce sulfur-containing VOC products. The authors also 
suspect that the very high dimethyl sulfide (DMS) levels (median
of 317 ppb) recorded may be due to reactive sulfur-containing
compounds being detoxified by enzymes, producing species of 
reduced toxicity. In summary, the authors produced the first
VOC signatures associated with human adipocytes and explored 
different possible reasons for the VOC patterns observed. As a
result, this work demonstrates the potential for early detection of
metabolic changes using VOCs, which could be achieved through
breath analysis. 

TDM is a branch of clinical chemistry that monitors medication
levels in the blood for the purpose of achieving the correct
dosage required for an individual. Some drugs have a narrow
therapeutic window, which, in addition to patient inter-variability
in response to a drug, renders the correct dose calculation chal-
lenging. Currently, blood-based TDM methods are used routinely. 
Noninvasive methods such as breath analysis would however be
more attractive, especially for pediatric patients, due to its non-
invasiveness [ 34 ]. In addition, patients incapable of proving an
online sample at a sampling site, that is, babies, could still be
sampled offline. The risk with offline sampling, however, is the
potential occurrence of artifacts. The work of Awchi et al. [ 34 ]
therefore set out to investigate the potential of using custom-made
Nalophan bags for offline breath sampling, running the sample
on a SESI-HR-MS within 30 min of collection. Based on previous
work [ 218 ], the authors focused on volatile breath metabolites that
were associated with valproic acid, a medication used for epilepsy,
and monitored their concentration stabilities in connection to 
offline sampling with Nalophan bags. The work of Awchi et al.
[ 34 ] developed on the work of Decrue et al. [ 191 ] by aiming to
predict VPA concentrations in blood, based on offline breath VOC
concentrations. 

In this work, 40 pediatric patients (mean age of 11.5) who were
taking VPA for epilepsy were sampled. Similar to Decrue et al.
[ 191 ], the Lin’s concordance correlation coefficient (CCC) was
evaluated to assess the agreement between offline and online
sampling methods. This was achieved by using a SESI-HR-MS, in
which the authors focused on m/z features which were associated
with VPA response and side-effects, and how suitable offline
analysis using nalophan bags would be. Awchi et al. [ 34 ] found
a Lin’s CCC value of above 0.6 for all of the analyzed VPA
features, except for two isotopic peaks of low signal intensity. As
a result, the authors demonstrated the potential of using offline
breath analysis to predict the VPA free fraction in blood. This
is despite protonated heptanedione and protonated 3-heptanone 
being negative and positive artifacts, respectively. 

8 Conclusion and Perspectives 

Clinical breath research has shown strong potential for non-
invasive disease diagnosis and monitoring through advanced 
VOC detection methods such as SESI-HR-MS, PTR-MS, GC-MS, 
and e-noses. These technologies have provided early evidence of
disease-specific metabolic patterns and predictive capabilities for 
conditions like asthma, COPD, diabetes, and lung cancer. Recent
progress, particularly in Switzerland since 2019, underscores 
the field’s proximity to clinical translation; however, significant 
challenges remain before breath analysis can be integrated into
Helvetica Chimica Acta, 2025
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routine practice. Current limitations include small and demo-
graphically narrow cohorts, inconsistent sampling and analytical
protocols, and a lack of standardized calibration, validation,
and external benchmarking systems. Cross-study variability still
hampers reproducibility and regulatory acceptance. 

To achieve clinical readiness, future studies must assemble
large, well-characterized, and longitudinal patient cohorts across
multiple centers, supported by harmonized workflows and val-
idated methods for VOC collection, quantification, and identi-
fication. Greater collaboration between hospitals and research
institutes is essential to increase patient access and enable
multi-site standardization. Moreover, integrating healthy and
disease controls, multi-omics data, and biochemical pathway
analysis will strengthen mechanistic interpretation and clinical
relevance. Coordinated benchmarking, transparent data sharing,
and methodological standardization will ultimately be critical
to establish robust, disease-specific VOC signatures and move
breathomics from research to routine clinical application. 
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